Green-Emitting Gd3Ga5O12: Tb3+ Nanoparticles Phosphor: Synthesis, Structure, and Luminescence
نویسندگان
چکیده
Nano- and microceramics of Gd3Ga5O12 garnet doped with 1 mol % Tb3+ ions were synthesized via co-precipitation and high-temperature solid-state reaction methods. X-ray diffraction measurements confirmed the formation of the garnet structure with Ia3d space group in all investigated samples. Atomic force microscopy surface images and grain-size distribution diagrams of Gd3Ga5O12: 1 mol % Tb3+ nanoceramics with 300 and 400 g/mol of polyethylene glycol (PEG) were obtained. The relationship between the content of polyethylene glycol and the particle size of Gd3Ga5O12: Tb3+ phosphors was revealed. An intense broad band (λ m = 266 nm) related to spin-allowed 4f 8-4f 75d 1 transitions of Tb3+ ions was found in photoluminescence excitation spectra of Gd3Ga5O12: Tb3+ nanocrystalline ceramics with PEG-300 and PEG-400 at 300 K. The broad excitation band caused by spin-forbidden (λ m = 295 nm) 4f-5d transitions in Tb3+ ions was additionally observed in the photoluminescence excitation spectra of Gd3Ga5O12: Tb3+ microceramics. Emission of Tb3+ ions under X-ray and UV excitations is presented by two groups of sharp lines which correspond to 5D3 and 5D4 → 7Fj transitions of Tb3+ ions with the most intense line at 546 nm (5D4 → 7F5). It was established that the increasing of PEG content leads to the decreasing of the X-ray and photoluminescence emission intensities.
منابع مشابه
Synthesis and characterization of Gd2O2 S: Tb3+ phosphor powder for X-ray imaging detectors
Gadolinium oxysulfide phosphor doped with trivalent terbium have been synthesized using urea homogenous precipitation and followed by sulfurization at 800 °C under argon atmosphere. Structural and morphological of synthesized phosphor powder were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Hexagonal structure ...
متن کاملTunable Luminescence in Sr2MgSi2O7:Tb3+, Eu3+Phosphors Based on Energy Transfer
A series of Tb3+, Eu3+-doped Sr2MgSi2O7 (SMSO) phosphors were synthesized by high temperature solid-state reaction. X-ray diffraction (XRD) patterns, Rietveld refinement, photoluminescence spectra (PL), and luminescence decay curves were utilized to characterize each sample's properties. Intense green emission due to Tb3+ 5D4→7F5 transition was observed in the Tb3+ single-doped SMSO sample, and...
متن کاملRed, Green, and Blue Photoluminescence of Ba2SiO4:M (M = Eu3+, Eu2+, Sr2+) Nanophosphors
Divalent europium doped barium orthosilicate is a very important phosphor for the production of light emitting diodes (LEDs), generally associated to the green emission color of micron-sized crystals synthesized by means of solid-state reactions. This work presents the combustion synthesis as an energy and time-saving preparation method for very small nano-sized Ba₂SiO₄ particles, flexibly dope...
متن کاملLayered rare-earth hydroxide and oxide nanoplates of the Y/Tb/Eu system: phase-controlled processing, structure characterization and color-tunable photoluminescence via selective excitation and efficient energy transfer
Well-crystallized (Y0.97-x Tb0.03Eu x )2(OH)5NO3·nH2O (x = 0-0.03) layered rare-earth hydroxide (LRH) nanoflakes of a pure high-hydration phase have been produced by autoclaving from the nitrate/NH4OH reaction system under the optimized conditions of 100 °C and pH ∼7.0. The flakes were then converted into (Y0.97-x Tb0.03Eu x )2O3 phosphor nanoplates with color-tunable photoluminescence. Detaile...
متن کاملNa(Y1.5 Na0.5)F6 single-crystal nanorods as multicolor luminescent materials.
A facile wet chemical synthesis method was used to prepare a range of single-crystal Na(Y1.5 Na0.5)F6 nanorods with controllable aspect ratios. Their novel multicolor upconversion (UC) fluorescence has been successfully realized by doping Yb3+/Er3+ (green) and Yb3+/Tm3+ (blue) ion pairs. When doped with Eu3+ and Tb3+ ions, the strong red and green downconversion (DC) fluorescence has also been ...
متن کامل